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ABSTRACT

The focus of this research is to determine if applying edge detection
segmentation (proposed by Ramin Zabih, Justin Miller, and Kevin Mai) to
Unmanned Aerial Vehicle (UAV) video footage can provide meaningful
segments for database storage and retrieval. The edge detection segmentation
algorithm is applied to fifty-four UAV video sequences containing visual effects
such as abrupt camera changes, camera zooms, motion (rapid and gradqal), and
cloud cover while varying the frame rate from 5 fps to 30 fps. An analysis of the
results is performed to compare actual versus expected outcomes, similar
sequences, and scen;es with motion, along with explaining false
positives/anomalies. ~Although the frame rate variation and analysis of the
scenes with cloud cover are inconclusive, applying the edge detection
segmentation algorithm to abrupt changes, rapid motion, and camera zooms
produced favorable results, as these were all detected as scene changes. Several
near-term and long-term benefits can be drawn from these results, and are

provided at the conclusion of the paper, along with recommendations for future

research.




ANALYSIS OF THE APPLICABILITY OF
VIDEO SEGMENTATION TO UNMANNED

AERIAL VEHICLE SURVEILLANCE VIDEO

1 INTRODUCTION

In today’s age, more information is being generated than at any other time
in human history. Terms such as information age and information revolution have
been coined to capture the excitement concerning the explosion of information
available over the last decade. Information has become somewhat of a
. commodity and an asset, critical to the success of all types of organizations, from
large corporate entitiés to the US armed forces. As the amount of information
generated grows exponentially, it has become exceedingly difficult to retrieve the

right piece of data at the right time.

To further complicate matters, information is not only plain text, but also
media rich sources containing audio and visual stimuli. One example of a media
rich source, video, is one of the most prevalent forms of information today. For
example, video is used as a communications medium to broadcast up-to-the-
minute news telecasts to consumers in their homes around the world. Video can
also be used for other purposes, such as entertainment, corporate training,

advertising, and university lectures over the Internet. An application of video
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that is important to the military is reconnaissance and surveillance.
Reconnaissance platforms such as the Unmanned Aerial Vehicle (UAV), in
conjunction with high-bandwidth networks, such as the Global Broadcast System

(GBS), provide real-time video feeds for war planners and war fighters.

In many of the aforementioned situations, it is suitable to extract
the most important still images from a video, and use these to represent the
sequence of events. However, in many applications, especially military uses, the
detailed information that video provides (suc_:h as speed, direction, duration, etc.)
is extremely important. This level of detail is exceedingly difficult to capture
with any other data soﬁrce [PATEL97]. Therefore, it is imperative the entire

video is stored, instead of representative clips or sequences.

As a consequence of the large amount of Video generated today, an
efficient and effective means of managing and retrieving this data must be
developed. However, traditional database management systems (DBMS) lack
the capabilities to support an object type with spatial and temporal properties.
Some ad hoc systems have been developed to handle video data, but they fall
short of providing the robust utilities of a full-blown database system
[ELMAGY97]. Therefore, much research is being conducted towards developing a

video database system.

As with any database system, before the data can be of any practical use, it

must be indexed and annotated for insertion into the database and for



subsequent' semantic-based retrieval and énalysis [DAILI9S]. However, indexing
digital video is an extremely challenging and complex problem. This is due ;co
the fact that in most cases, the item a user may be interested in is not the video in
its entirety, but a particular segment contained within the video. As a result,
indexes must be provided to the internal segments of a video, not just to the
video itself. Indexes could be prdvided to the most atomic unit of video data,
known as a frame. However, indexing by individual frames would be extremely
inefficient. A more advantageous method would be to identify meaningful

segments to serve as retrievable units [LIENH97].

Consequently, video is usually broken down into an atomic level of
granularity known as a shot. A shot can be described as a collection of
continuous video frames consisting of the same action in space and time
[SETHI95]. The act of separating a video into its basic shots is known as video
segmentation. Once a video has been segmented, its distinct shots can be indexed
for future searches, or combined with similar shots to form a meaningful

episode.

1.1 Problem

As stated earlier, the Unmanned Aerial Vehicle (UAV) provides real-time
video feeds to tactical war planners. This UAV video data is also of considerable
value to intelligence imagery analysts. Currently, imagery analysts must process

hundreds of hours of video data, much of which contains limited useful
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information. To further complicate matters, budget constraints and personnel
cutbacks, in conjunction with a high operations tempo, place an enormous
burden on an already overtasked workforce. Accordingly, a robust method is
needed to allow the analysts to process the video data and extract the pertinent
information, along with an effective facility for storage and semantic-based

retrieval of that information.

Current operational intelligence data handling systems (IDHS) are
not equipped to handle digital video. As a result, imagery analysts have no
facility to retrieve UAV data on a particular target or area of interest. The current
method consists of a manual, time-expensive search through an 8mm-video tape
library containing several thousand tapes [WIEDE97]. Therefore, much work
needs to be done towards applying state-of-the-art video database technology
and applications to IDHS environments responsible for the exploitation of UAV
data. As discussed earlier, video segmentation is a first step towards partitioning
and indexing digital video for iﬁsertion in a database system. There are many
video segmentation algorithms in the literature [BOUTH97] [LEEIP95]
[MENG]J95] [SETHI95] [VASCO97] [WANGA94] [XIOLE95] [XIOIP95] [YEOLI9S5]
[ZABIH97]. Most of these were developed to detect man-made scene cuts such
as those that occur in edited motion pictures. However, little work has been
done applying these algorithms to surveillance video such as UAV footage.

Accordingly, the focus of this research is to determine if the application of state-




of-the-art video segmentation to UAV video footage can provide meaningful

segments for database storage and retrieval.

1.2 Scope

Although much work is required to implement a video database
system to store and retrieve UAV footage, this work will be limited to an analysis
of video segmentation. Specifically, this research applies a pre-selected video
segmentation algorithm to UAV footage, to determine if video segmentation is a
viable means of partitioning UAV video data. The algorithm used in this
research is the edge detection method proposed by [ZABIH97]. A description of
this method is provided in section 2.2.6, and the rationale for its choice in this

research in explained in section 3.1.

1.3 Approach

This research will be conducted in several steps. The first step
consists of a literature review of video databases and video segmentation. Based
on this research, an applicable video segmentation algorithm is selected from the
literature for experimental purposes. The selection criterion for the segmentation
algorithm takes into account not only the performance of the algorithm, but also
the type of data it will be used with (continuous surveillance video footage).
After the algorithm selection, UAV video footage is selected for experimental
purposes. To include a wide variety of the typical visual effects a UAV may

encounter, scenes with abrupt changes, camera zooms, slow motion, rapid
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motion, afld cloud cover are chosen. Finally, the selected segmentation
algorithm is executed on each of the scenes and the results are collected f;)r
subsequent analysis. The analysis consists of comparing the results of expected
versus actual outcomes, similar sequences, and scenes with motion, along with

explaining anomalies and false positives.

14 Assumptions

A few assumptions are necessary in order to perform the research
proposed in this document, and to validate the results and conclusions of the
experiment. First, it is assumed the UAV data is available in digitally encoded
MPEG (Motion Picture Expert Group, see section 2.1.2.2 for a full discussion)
format. Second, the sampling of UAV video footage used for experimental
purposes in this research is assumed to be a good representation of the typical
visual effects the UAV visible light cameras encounter. Visual effects such as
zooms, rapid camera movements, and abrupt camera feed changes form the
cornerstone on which scene breaks are detected in UAV footage. Finally, it is
assumed the time and processing requirements (CPU power, RAM, etc.) required
to perform segmentation are available to UAV imagery exploitation analysts in
their current or near-future IDHS environments. Video segmentation is a time
and CPU-wise expensive process, and these resources must be available for

video segmentation to be of any near-future benefit to UAV imagery analysts.



1.5 Thesis Organization

This document is divided into 5 chapters. Chapter 1 introduces the
concept of video segmentation, and renders an explanation of its possible
application to UAV video data. In Chapter 2, a background on digital video
storage and retrieval is presented, including a discussion of digital
representation of video and a survey of video database system issues and
concepts. Also in Chapter 2, an overview of video segmentation is provided,
along with a description of the Predator UAV system. Chapter 3 describes the
methodology undertaken in this research, specifically the algorithm selection,
UAV data acquisition, and subsequent algorithm experimentation and analysis.
Finally, Chapters 4 and 5 present the analysis of the experimental results, and

conclusions and recommendations for future research, respectively.



—

2 BACKGROUND

As stated in Chapter 1, video is common in many aspects of life, including
military applications. Current operational intelligence reconnaissance systems,
such as the Predator, Hunter, and Pioneer Unmanned Aerial Vehicle (UAV)
systems, do not incorporate digital video storage and retrieval capabilities. As a
result, no effective means exists for intelligence analysts to retrieve archived
video information about a specific target, without performing a painstaking
manual search. Consequently, the goal of this research is to détermine if video

segmentation can provide a foundation for building a digital video storage and

retrieval environment for continuous surveillance video.

As a precursor to understanding the methodology employed in this
research, a fundamental appreciation for digital video issues is required, along
with a background of the employment and operation of the UAV. This Chapter
provides an overview of these issues in three main sections. The first section, 2.1,
provides an overview of digital video storage and retrieval. The second part of
the chapter, section 2.2, is the most important section of Chapter 2. In this
section, a discussion of video Segmentation is provided, along with overviews of
the various categories of segmentation algorithms in the literature, Finally, in

section 2.3, the Predator UAV system is discussed, including its system

configuration, product dissemination, and data retrieval limitations.




2.1 Overview of Digital Storage and Retrieval

This section provides an overview of digital storage and retrieval. It is
broken into three main sections. In séction 2.1.1, a discussion is provided on the
unique characteristics of video data. Section 2.1.2 provides an overview of the
digital representation of video, including the digitization process and
compression standards. In section 2.1.3, the fundamental issues of video
database ﬁanagement systems are outlined, including data modeling, data

insertion, data indexing, and data query/retrieval.

2.1.1 Characteristics of Video Data

Digital video is a medium with extremely high resolution and very rich
information content. Along with metadata such as date, title, etc., video provides .
other detailed information, including object motion, and time lapse event
occurrence. These temporal and spatial aspects of digital video make it different
from textual or alphanumeric data stored in traditional database management
systems. Additionally, the unstructured format and large volume of digital
video make it difficult to efficiently and effectively manipulate, store, and

retrieve.

As mentioned earlier, digital video has many unique characteristics when
compared to other data types. Table 2-1 [ELMAGY7] provides an overview of

the essential differences.




Table 2-1. Comparison of Video with Textual and Image Data

Criteria Textual Data Image Data Video Data
Information Poor Rich Extremely Rich
Dimension Static and Non- Static and Spatial Temporal and

spatial Spatial
Organization Organized Unstructured Unstructured
Volume Low Median to High Massive
Relationship Simple and Well- Complex and I1I- Complex and IlI-
Defined Defined Defined

Information: Video data inherently contains much more information than
plain textual data. Consequently, the interpretation of video depends directly
on the viewer and the application being employed. The interpretation can be

ambiguous and different for each viewer.

Dimension: Textual data is static and non-spatial, and can be considered one-
dimensional. Image data is spatial, but does not contain temporal properties,
making it two-dimensional. On the other hand, video data has both spatial

and temporal properties, and can be considered three-dimensional.

Organization: Traditional data types, such as textual data, have a simple
underlying structure.  Existing database management systems store

alphanumeric data with a finite symbol set. However, video data does not

have a clear structure, and, as a result, is difficult to model and represent.

Volume: Textual data by nature has a small data volume. Image and video

data, on the other hand, have a much larger data volume. Image data is of

10




the magnitude of several thousand bytes, and one minute of video may

contain over 1,000 image frames.

* Relationships: Alphanumeric relationship operators (equal, not equal, etc.) in
traditional database management systems are simple and well defined.
However, there are no universally accepted relationship operators for image
and video data. As a result, video data indexing, querying, and retrieval are

more difficult than their textual counterparts.

2.1.2 Digital Representation of Video Data

Understanding the issues associated with video database systems
requires knowledge of how video is represented digitally. Digital video
representation can be divided into two main components: video digitization and

digital video compression.

2.1.2.1 Video Digitization Process

Figure 2-1 [PATEL97] provides an overview for the digitization
process for digital video. The process begins with an input analog video signal.
The input signal is based on the National Television System Committee (NTSC)
standard video format. The NTSC format specifies 60 interlaced fields per
second of analog video. Each field is constructed by 240 horizontal scan lines,
which, using interlaced mode, produces 480 scan lines. Specialized computer

hardware (video capture) is used to capture the analog video and create its
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NTSC Video

480 Interlaced Scan Lines

Digitization

Hardware

Digitized Video Frames

Pixel - RGB

Digital

Storage

| Figure 2-1. Video Digitization Process

digital form. The video capture hardware does this by sampling the scan line
analog video signal and producing a digital value. The digitized samples are
known as pixels, which represent the luminance and coior in the image. Each
scan line is sampled 640 times, producing a 640 X 480 rectangular grid digital

video frame [PATEL97].

Once the analog signal has been captured and transformed by
video capture hardware, it can be stored in digital form. Figure 2-2 [PATEL97]
provides a description of the digital representation of video. The main
component of digital video is frames, which are images with temporal positions
as a function of time. Each frame is then composed of pixels. Pixels are defined
as a function of spatial coordinates. [Each pixel represents three color

components for color video (or one brightness component for black and white
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Figure 2-2. Digital Video Representation

video), and is enumerated in the range zero to 255. As a result, each color

component of a pixel requires 8 bits (or one byte) of storage.

Based on the provided information about thé digital representatidn
of video, it is easy to see why digital video requires a large amount of storage
and memory. For example, consider the memory requirement for digitizing
video. At a frame rate of 30 frames/ second, with full resolution (640 x 480
pixels), and true color (RGB/pixel), the digitization process requires the

following amount of memory [PATEL97]:
30 frames/second x (640 x 480 pixels) x 3 bytes/ pixel =

27,648,000 bytes/second
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At the current time, it is not feasible to have such large and expensive
hardware to support video’s memory and storage requirements. Therefore,
much work has been accomplished towards developing video data compression
techniques. The next section provides an overview of some of the most popular

video compression standards.

2.1.2.2 Digital Video Compression Standards

As presented in the previous section, one of the large problems facing the
design and use of video database systems is the large volume of data in raw
video. For example, sixty seconds of uncompressed digital video can require
upwards of one gigabyte of storage. Consequently, compression has shown to
allow effective and efficient storage, transmission, and manipulation of digital
video. The following sections provide an overview of some of the more popular

video compression techniques and standards.

MPEG

The Motion Picture Expert Group, or MPEG, meets under the
International Standards Organization (ISO) to create and maintain standards for
digital video and audio compression. MPEG video compression is a block-based
encoding scheme. Specifically, the standard defines a compressed bit stream,
which implicitly defines a decompressor [PATEL97]. The video stream consists
of a header, a series of frames, and an end-of-sequence code. Because the stream

is temporally compressed (most frames build upon previous frames), there are
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periodic Intra-Pictures, or I frames. I frames provide full images to be used as
periodic references, and allow random access to the video stream. Other frames
are predicted, using either a preceding I frame (creating a P frame) or a
combination of preceding and following I frames (creating a B frame). The order
and interspersion of the I, B, and P frames are determined by the encoder. A
typical sequence would be I-B-B-P. However, the order of pictures in the data
stream is not the order of display. For example, the previous sequence would be

sent as [-P-B-B [KAYLE95].

Figure 2-3 [PATEL97] provides an overview of the basic structure of an
MPEG video stream. Each individual color frame is converted to the YUV color
space (where the Y component provides the luminance, and the U and V
components provide the chrominance information). The frames are then further
decomposed into smaller units known as macro blocks (16 x 16 pixels) and micro
blocks (8 x 8 pixels). Macro blocks are created by breaking frames up into slices of
16 pixels high, and then breakiﬁg each slice up into a vector of 16 x 16 pixel
blocks. Each macro block contains luminance and chrominance components for
each of four 8 x 8 pixel miéro blocks. For each macro block, a spatial offset
difference between a macro block in the P and I frame(s) is given if one exists,
providing a motion vector. The motion vector is then combined with a
luminance and/or chrominance difference value. Macro blocks with no

differences can be skipped except in an I frame. Blocks with differences are
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internally compressed, using a combination of a Discrete Cosine Transform
(DCT) algorithm on pixel blocks and variable quantization of the resulting

frequency coefficients [KAYLE95].
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' Micro Block ~ |
8x8
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<«+— Macro Block N
16x16
Y |*— Four Luminance Block Motion Vectors
Yh Two Chrominance Block
U Vv
Figure 2-3. MPEG Structure

Figure 2-4 [SETHI95] provides an outline of the intra-block coding
process. The DCT algorithm accepts signed 9-bit pixel values and produces
signed 12-bit coefficients. The DCT is applied to one micro block at a time,
converting each 8 x 8 block into an 8 x 8 matrix of frequency coefficients. The
variable quantization process divides each coefficient by a corresponding factor
in a matching 8 x 8 matrix and rounds to an integer. Quantization results in

numerous zero coefficients, particularly for high-frequency terms at the high end
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of the matrix. Accordingly, amplitudés are recorded in run-length form
following a diagonal scan pattern from low frequency to high frequency. All
control data, vectors, and DCT coefficients are further compressed using

Huffman-like variable-length encoding [KAYLE95].
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Figure 2-4. Intra-Block Coding Process

MPEG provides very good compression, but requires time-wise expensive
computations to decompress the data for display purposes. As a direct result,
achievable frame rates are greatly limited on systems that currently use MPEG
compression. In spite of this disadvantage, it is widely believed that MPEG will

soon become the de facto standard for all home and industry video applications

[ELMAGY7].
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JPEG/MJPEG

JPEG is a standardized image compression scheme developed by the Joint
Photographic Experts Group. It was designed for compressing either full color
or gray scale images of real-world scenes. It works extremely well with
photographs and naturalistic artwork. JPEG only handles still images, and is a
lossy compression scheme. JPEG achieves its dramatic compression ratios (from
25:1 to 75:1) by exploiting known limitations of the human eye, most notably,
that small changes in color are perceived less accurately than small changes in
brightness [ELMAGY97]. Therefore, JPEG compression is meant to be used on
images viewed by humans, rather than by machines. The small errors
introduced by JPEG compression may cause problems for any application that

requires a machine interpretation of an image.

Although not strictly part of JPEG compression, most implementations
start by converting the RGB image into a luminance/chrominance (YUV) color
space. The raster data may be subsampled, combining adjacent pixels into a
single value. A Discrete Cosine Transform (DCT) is then applied to convert the
raster data into'rate-of-chang.e information. Quantization truncates the results of
the DCT coding to a smaller range of values (this step makes JPEG lossy). The
quantization coefficients determine how much data is lost, the extent of
compression, and the quality of the reconstructed image. Finally, the results of

quantization are compressed using either Huffman or arithmetic coding to
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produce the final output. Decompression reverses the above steps,
decompressing the quantized results and using a reverse DCT to reconstruct thé
image. The low-order bits lost to quantization are not reconstructable, so the
decompressor inserts zeroes for them [KAYLE95]. This loss of bits results in a

degradation of color richness.

MJPEG is simply motion JPEG. Although there is no uniform staﬁdard for
MJPEG, various vendors have applied JPEG compression algorithms to
- individual frames of a video sequence and called the result MJPEG. Usually, the
various versions of MJPEG implemented across vendor boundaries are not
compatible. Despite the lack of compatibility, MJPEG has several advantages

when compared to MPEG:

» Frame-based encoding (good for accurate video editing)

e Fairly uniform bit rate

* Simpler compression (no cross frame encoding; requires less computation)

The major disadvantage of MJPEG is that it does not support inter-frame
compression (which MPEG does support). This makes the compression ratio for

MJPEG about 3 times worse than MPEG [ELMAG97].

H.261

H.261 is a widely used international video compression scheme allowing

the frame rates required for real-time video telecoh.ferencing. H.261 provides a
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standard s'cheme for video encoding and decoding of the moving picture
component of an audiovisual service at rates approaching 2 Megabits per second.
It was designed to be suitable for applications using circuit-switched networks as
their transmission medium (such as telephone service). H.261 was originally
targeted for Integrated Services Digital Network (ISDN), and has many
hardware/ software implementations (e.g. PC video cards). The H.261 encoding
algorithm is very similar to that of MPEG, however, there are some differences,
the largest being that the two schemes are not compatible. Additionally, H.261
requires less CPU power for real-time encoding than MPEG. Another difference
is that H.261 includes a mechanism that optimizes available bandwidth by
sacrificing picture quality for motion. This causes a quickly changing picture to

have a poorer quality than a static picture [ELMAG97].

DVI

Digital Video Interactive, or DVI, is a compression scheme
developed by Intel® based on the region encoding technique. Each frame of a
video sequence is divided and sub-divided into regions until they can be
mapped onto basic shapes that fit the allotted bandwidth and required quality of
the video applicatim'l. The decoder can accurately reproduce the given shapes at
the receiving end. The actual data sent éver the network is a description of the
region tree and the shapes of the leaves of the tree. DVI is an asymmetric coding

scheme; it requires a large amount of processing for encoding and much less for




decoding. Although not a true standard, the DVI format is used extensively in
commercial applications and on the Internet and World Wide Web (WWW)

[ELMAGY7].

QuickTime

QuickTime® is Apple’s® cross-platform file format for the storage and
interchange of sequenced data. Similar to DV], it is not currently a standard, but
is heavily used on the Internet and WWW. QuickTime movies are made up of
time-based data streams, which may contain sound, Video< or other sequenced
information. The QuickTime data streams are built up ffom basic units known
as atoms, which describe the format, size, ahd content of the movie storage
element. Atoms can be nested recursively within container atoms. One type of
container atom is the movie atom, which provides the time scale, duration, and
display characteristics for the entire movie file. Movie atoms also contain one or
more atoms that describe a single track of the movie, independent of other atoms
and carrying their own spatial and temporal information. These atoms are
known as track atoms, and contain data such as editing information, track priority
in relation to other tracks, and display/masking characteristics. QuickTime also
supports many other types of atoms, including text and media atoms. Although
not currently a standard, QuickTime has the potential to become the computer

industry standard for the interchange of video and audio sequences [ELMAG97].
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2.1.3 Video Database Management System

As stated earlier, the unique aspects of digital video make it much
different from textual or alphanumeric data stored in traditional database
management systems. Digital video’s spatial and temporal properties, volume,
and complex relationships make it impractical to store and retrieve in an
ordinary DBMS. In an effort to provide efficient and effective storége and
management of digital video data, much research has been accomplished
. towards developing a Video Database Management System (VDBMS). A
VDBMS is a software system that manages a collection of video data and
provides content-based access to users [HAMPA95]. As in any other DBMS, the
goal of a VDBMS is to provide an environment both convenient and efficient for
retrieving and storing video information in a database [YEOYE97]. Figure 2-5
[ELMAGY7] depicts the components of a generic VDBMS. Similar to traditional
database management systems, a VDBMS must provide the essential data
management functions of data modeling, data insertion, data indexing, and data
query and retrieval. The video-unique aspects of these are briefly described

below.

2.1.3.1 Video Data Modeling

Video data modeling deals with the representation or abstraction of video
data. Specifically, video data modeling is the process of designing the

representation for the video data based on its characteristics and information
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Figure 2-5. Generic VDBMS

content, and the application the data is intended to be used with. Modeling
video data facilitates operations in the VDBMS such as data insertion, editing,
indexing, browsing, and querying. As a result, constructing a video data model
is usually the first task accomplished in the process of designing a VDBMS.
Video data modeling is important in the design of a VDBMS because the
abstraction chosen for the model directly determines which features will be used
in the indexing process. Thus, the video data model can greatly impact the

performance of the VDBMS.
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Requirements for a Video Data Model

As a traditional database management system supports textual and
numeric data, a VDBMS should support digital video as one of its native data
types. To accomplish this, the underlying video data model should integrate the
content attributes of the video data along with a description of its semantic
structure. Physical objects contained within the video sequence, such as people,
vehicles, buildings, etc., should be described, along with any associated audio
communications relating to those objects. Spatial and temporal relationships
among video segments should be expressed. The model should also support the
automatic extraction of features such as color, texture, shapes, and motion
[HAMPA95].  The following sections elaborate some of the essential

requirements the video data model must support.

Multi-Level Abstraction Support

All video stream data contains two basic levels of abstraction: the entire
video and individual frames. For most applications, including military
reconnaissance, the entire video is too coarse a level of abstraction to bé of any
practical use. Conversely, a single frame is of little interest since it spans an
extremely short interval of time (NTSC video specifies 30 frames per second).
Consequently, other levels of abstractions are often desired, namely shots (also

called scenes or clips, described below), and thus a hierarchical or multi-level
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abstraction of video data can be formed. Multi-level abstraction support has
several advantages [HJELS96]:
* Allows easy reference of video information and simplifies comprehension of

its contents

Provides good support for video browsing

Simplifies video indexing and storage organization

The video shot is considered by some the basic structural element for
characterizing video data [HAMPA95]. A shotisa contiguously recorded series
of frames that represent continuous action in space and time [SETHI95]. Shots
that are related in time and space can be combined to form an episode. Figure 2-6

provides a graphical depiction of the hierarchical abstraction of video data.

Spatial and Temporal Relatz:onship Support

As stated earlier, the spatial and temporal characteristics of video
data make it quite different from traditional data types. These characteristics
underscore the importance that the video data model identifies physical objects
contained within the video as well as their relationships in space and time. A
typical user of a VDBMS may wish to issue queries that contain both spatial and
temporal constraints. For example, temporal relationships (such as before, meets,
overlaps, during, starts, finishes, equals) may be used in formulating queries to
restrict the returned video sequences. Three-dimensional spatial relationships

may also be used to determine which video sequences satisfy a
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given query. At the current time, very few research attempts have been made at
the formal representation of spatio-temporal relationships of video objects and

queries based on those relationships [HJELS96].

Video Annotation Support

The video data model should provide for simple and dynamic annotation
of video data stored in a VDBMS. In contrast to textual and alphanumeric data
types, digital video does not easily accommodate automatic feature extraction.
Furthermore, the very structure of video data, while capturing some aspects,
may not be suited for the representation of every characteristic of the material

that it represents. For example, given videos of two city blocks, it may be
26




impbssible to determine which city block is in Ohio and which is in Tennessee.
For these reasons, is should be possible to link variously detailed descriptions of
wvideo content to arbitrary frame sequences. Also, many annotations may be
modified since the interpretation of the human user and the application domain
may change. As a result, the annotations must be dynamic. Presently, the video

annotation procedure is mostly a manual, off-line process [GUPTA97].

2.1.3.2 Video Data Insertion

Video data insertion deals with introducing new data into the database
management system. The insertion process usually consists of the following

steps:

Feature Extraction - Key information or features are extracted from the data

for instantiating the video data model.

* Video Segmentation - The video stream is broken down into a set of basic

units (shots) for indexing and retrieval purposes.

* Annotation - Based on the application domain, the necessary additional

attributes are added to the video data (such as titles, times, areas, names, etc.).

* Indexing and Storage - Based on the features extracted from the raw video
data and the stibsequently added annotations, indexes are built on the data,

and the data is stored in the VDBMS.
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2.1.3.3 Video Data Indexing

Due to the large data volume in a VDBMS, retrieving the actual video can
become extremely time consuming. As with text-based data, indexing organizes
the video data in the VDBMS to make user access such as querying and browsing
more efficient. Consequently, video data indexing is considered by some the

most important step in the video data insertion process [JAGAD97].

When compared to simple indexing done in traditional database
management systems, several factors make video indexing more difficult and
complex [LIENH97]. First, in traditional database management systems, data is
usually organized according to one or two key fields on which the data can be
uniquely identified. However, the choice of unique attributes in a video is not as
easy to determine. UI;ique identifiers for video data could be audio-visual
features, user-supplied annotations, spatio-temporal information, or some
combination of the three. Another complicating factor is the automatic
generation of indexes. Traditional database management systems can
automatically generate indexes based on the values in key fields. However,
generating indexes based on the content of video data is not simply field-based,

but value-based.

Despite the difficulties of video data indexing, much work is being

accomplished towards developing indexes for video data. The ongoing work




can be classified into two main categories: annotation-based indexing and

feature-based indexing.

Annotation-Based Indexing

Annotation-based indexing allows access to the data on semantic content
rather than external information or attributes. Currently, automatic annotation
of video data is unrealistic due to limitations in machine learning and computer
vision. Consequently, annotation-based indexing is a manual process requiring
frequent human intervention. The manual annotation process is usually
performed by an experienced human user, such as an intelligence imagery

analyst. Manual annotation of video data has several disadvantages:

* Manual annotation is time consuming, and thus is not appropriate for large

quantities of video data

¢ Annotation is application dependent; therefore, certain domains may not be

applicable to other applications
* Annotation is biased and limited by the human expert performing the work

Due to the disadvantages of manual annotation, many existing indexing
techniques concentrate on the selection of keywords (usually from the
annotations), data structures, and user interfaces to facilitate user access

[ELMAGY7].
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Feature-Based Indexing -

In contrast to the annotation-based indexing approach, feature-based
indexing seeks to fully automate the indexing process. In feature-based
indexing, image-processing algorithms segment the video data stream, identify
representative frames, and extract key features from the data. Key features can
be characteristics such as color, object motion, texture, detected edges, etc. Once
key features are extracted, indexes can be built on those representative features.
The main advantage of feature-based indexing is the ability to automatically
generate indexes without human interventibn, thus, saving time and reducing
indexing errors. Howe\.zer, feature-based indexing lacks the ability to associate
semantics with the extracted features. This disadvantage can cause serious
problems with the typical semantic-based queries which video database

management systems should support [ELMAG97].

2.1.3.4 Video Data Query and Retrieval

Video data query and retrieval deals with the extraction of video data
from the VDBMS that satisfies user-specified search criteria. The search criteria
may not require an exact match (similar to the types of queries performed in a
traditional DBMS), but a best match. For example, a user may wish to see all
video sequences with a frame similar to a given still image. Additionally, the
search criteria may involve the content of the video, not just annotated

information or metadata associated with the video sequence. For example, a user
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may want to see all video sequences that involve a dog chasing a man.
Consequently, the video data query and retrieval process is more complicated

and computationally expensive than its text-based counterpart [HAMPA95].

The typical VDBMS query and retrieval process involves the following
steps. First, the user expresses the query through the user interface. Once the
query has been entered, it is processed and evaluated by the query processor.
The attributes and feature values specified by the query are used to retrieve the
corresponding video sequences from the database. Usually, the features
specified in the query are directly related to the indexing structure(s); therefore,
the query is processed by searching the indexing structure(s). Once the
appropriate video sequences are retrieved by the database system, they are

displayed through the user interface in an intelligible form.

2.2 Video Segmentation

As stated earlier, video database management systems must address the
problems of data modeling, insertion, indexing, and query/retrieval. One
fundamental aspect that has a great impact on these problems is the content-
based temporal sampling of video data. Temporal sampling of video frames
seeks to identify significant video frames for representation, indexing, storage,
and retrieval of the data. Automatic content-based temporal sampling of video
data is application dependent, and usually requires semantic interpretation of

the video content. Since the artificial intelligence techniques (machine learning,
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object recognition, image processing) required for this type of sampling are
relatively immature, automatic content-based temporal sampling is not currently

feasible [ELMAGY97].

However, satisfactory results can usually be obtained by decomposing the
video into segments by determining the boundary (scene break) between
consecutive camera shots. The isolation of shots is of interest since shot-level
organization is considered by some the most appropriate level of abstraction for
video browsing and content-based retrieval [YEOYE97]. The process of
decomposing video into shots is referred to as video segmentation. Selecting one
representative frame from each shot, since a shot is a continuous sequence of
video frames that have no significant inter-frame difference in terms of visual
content, can then approximate content-based temporal sampling. The
partitioning of video into shots is usually achieved by measuring inter-frame
differences and detecting sharp peaks. There are many video segmentation
algorithms in the literature [BOUTH97] [LEEIP95] [MENG]J95] [SETHI95]
[VASCO97] [WANGAY4] [XIOLE95] [XIOIP95] [YEOLI95] [ZABIH97], and they
can be classified into several. different categories based on the methods they use
to determine scene breaks. The following sections provide an overview of the

various categories.
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2.2.1 Pairwise Comparison

Algorithms using the pairwise comparison method determine scene
breaks by examining successive frames pixel by pixel. The algorithm takes as
input two image frames, I and [+1. Each pixel of I is compared with the
corresponding pixel in I+1, and the difference between the two pixels (if there is
one) is added to the total difference between the two image frames. If‘ the total
difference between two successive image frames exceeds a specified threshold, a
scene break is declared. Pairwise comparison may be used on color as well as

grayscale image frames [XIOIP95].

2.2.2 Likelihood Compatrison

The likelihood comparison algorithm takes as input two successive image
frames, I and I+1. First, each frame is divided into uniform regions and the mean
and variance of intensity values of each region is computed. The mean and
variance of corresponding regions of I and [+1 are then compared to establish a
likelihood comparison factor. The likelihood comparison factor provides an
indicator as to whether two sets of values came from the same probability
distribution. The likelihood comparison factor between corresponding regions of
I'and [+1 is compared against a specified threshold. If the comparison factor
exceeds the threshold, a 1 is added to the total frame to frame difference value
(indicating the two regions are not from the same distribution). Each region of I

is compared to the corresponding region in [+1 in this manner, and the results
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are added to the total frame to frame difference value. If the total frame to frame
difference exceeds a specified threshold, a scene break is declared. Likelihood

comparison may be used on color as well as grayscale image frames [XIOLE95].

2.2.3 Global Histogram

Algorithms using histogram techniques determine scene breaks by
measuring probability distributions of pixel values in a given image. The global
histogram is computed by dividing the color space (either full color or grayscale)
into discrete bins and counting the number of pixels that fall into each bin. The
difference between two image frames I and I+1 is determined by comparing their
histograms. Each bin in the histogram of I is compared to the corresponding bin
in the histogram of I+1. The difference between bins is added to the total frame
to frame difference value, and if this value exceeds the specified threshold, a

scene break is declared [XIOIP95].

2.2.4 Local Histogram

In this method, a frame is divided into uniform, non-overlapping regions.
Histograms of each region are computed (in the same manner they are computed
in the global histogram method) and compared to the corresponding histograms
from the successive frame. As in the global histogram method, corresponding
bins from each histogram are compared, and the difference is added to the

regional difference. The total frame to frame difference is calculated by summing




all the regional differences between the two successive frames. If the total

difference exceeds the specified threshold, a scene break is declared [XIOLE95].

2.2.5 Weighted Color Histogram

In certain video sequences, a series of frames may contain a dominant
color. Based on the application domain, the dominant color may be given a
greater weight in determining if a scene break occurs between two frames. In the
weighted color histogram method, a histogram is created for each of the
successive image frames béing compared. The histogram is then weighted by the
luminance values for the color space being used (for e#ample, red, green, and
blue would be used for RGB). The histograms between the two successive image
frames are compared, and if the difference exceeds a specified threshold, a scene

break is declared [DAILI95].

2.2.6 Edge Detection Segmentation Method

The edge detection segmentation method proposed in [ZABIH97] is based
on the observation that during a shot transition new intensity edges appear far
from the locations of old edges, and old edges disappear far from the location of
new edges. An edge pixel that appears far from an existing edge pixel is defined
as an entering edge pixel, and an edge pixel that disappears far from an existing
edge pixel is an exiting edge pixel. By counting the number of entering and
exiting edge pixels, this algorithm can detect and classify cuts, fades, and

dissolves.
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The algorithm takes as input two consecutive image frames, I and
I+1. An edge detection step is performed, which results in two binary imagé
frames E and E+1. The term pin denotes the percentage of edge pixels in E+1
which are more than a fixed distance r from the closest edge pixel in E. Thus, pin
represents the proportion of entering edge pixels. It should assume a large value
during a fade in, cut, or a dissolve. Similarly, the term pout denotes the
percentage of edge pixels in E which are farther away than a fixed distance r
from the closest edge pixel in E+1. Thus, pout measures the proportion of exiting
edge pixels, and should assume a high value during a fade out, cut, or a dissolve.

Using the previously describe terms, the dissimilarity measure is the following:

£ = max(pin, Pout)

This measure of dissimilarity represents the fraction of changed edges.
Scene breaks can be determined by searching for peaks in p, which is known as

the edge change fraction.

2.3 Predator Unmanned Aerial Vehicle

As stated earlier, the focus of this research was to determine if video
segmentation could provide a foundation for building a digital video storage and
retrieval environment for continuous surveillance UAV video. The first two
sections of this chapter provided an overview of digital video storage/retrieval
and video segmentation. To ‘have a complete understanding of the approach
taken in this research, it is critical to comprehend some of the elementary issues
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associated with the Predator UAV. This section provides a basic profile of the

UAV system.

2.3.1 Predator UAV System Background

In the Desert Storm conflict, numerous military commanders were
frustrated with their inability to obtain timely imagery intelligence. This
inability illustrated the need for a long dwell, theater controlled, imagery
reconnaissance capability with sufficient range and endurance to cover a typical
target area. The result of these requirements was an Advanced Concept
Technology Demonstration (ACDT) system known as the Medium Altitude
Endurance Unmanned Aerial Vehicle (MAE-UAV), or Predator. Predator is a
tactical reconnaissance system with an airborne platform that provides high
quality still and motion, color and gray-scale imagery of tactical targets.
Predator can loiter over a target 500 nautical miles from its launch point,
providing live imagery and narration (provided by ground personnel), exploited
still imagery, and textual reconnaissance reports to theater commanders through
standard military networks [WIEDE97]. The following sections provide a brief
overview of Predator’s system configuration, product dissemination, and data

retrieval limitations.
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2.3.2 Predator UAV System Configuration

The standard Predator system configuration consists of three to four
Predator air vehicles and their ground support equipment. The air vehicle is
composed of carbon fiber composite materials and designed with high aspect
ratio wings. This design sacrifices speed to produce high efficiency and long

operating endurance (see Figure 2-7 for the Predator in flight).

Figure 2-7. Predator in Flight
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The air vehicle contains several reconnaissance sensors, including motion
imagery cameras (visible light), infrared cameras, and Synthetic Aperture Radai'
(SAR). The typical system also includes a Ground Control Station (GCS) which
houses the imagery exploitation personnel. Ground Data Terminals (GDT)
provide communication links between the air vehicle and the GCS, and between

the GCS and SATCOM dissemination systems [WIEDE97].

2.3.3 Predator UAV Product Dissemination

Predator motion video is typically downlinked to the GCS, where it is
overlaid with telemetry and support data (including Latitude, Longitude,
Elevation, etc.). The composite video data is transmitted to a SATCOM shelter,
where it is converted to MPEG, and transmitted over satellite to critical theater
operational centers (US Sector HQ at Tuzla, Joint Endeavor HQ in Sarajevo,
Combined Air Operations Center at Vicenza, and Joint Analysis Center (JAC) at
Molesworth, UK). At these command centers, the compressed video is
decompressed and converted to analog, where it is then presented to command
and analytical users. Additionally, significant video frames are captured and
converted to National Imagery Transmission Standard Format (NITSF) for
transmission to JAC Molesworth via SIPRNET. Once at JAC Molesworth, the
images are added to the 5D (Demand Driven Direct Digital Dissemination)
database system, which is accessible by most of the operational intelligence

community [WIEDE97].
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2.3.4 Predator UAV Video Data Retrieval Limitations

Predator has been deployed on two separate military operations in Bosnia,
Operation Nomad Vigil and Operation Nomad Endeavor. In both operations,
every hour of sensor operation was recorded on 8mm-video tape, creating over
2,000 hours of video on over 1,000 tapes. In this scenario, it is difficult to find any
particular target or scene of interest, especially if the date of collection is
unknown. The current process requires an analyst to perform a painstaking
manual search of the tapes. Given that on average at least half of the tapes
would need to be viewed to find a particular target, an analyst would have to
view over 1,000 hours of video. Expanding collection systems, future
deployments, and personnel cutbacks further exacerbates this number. Under
this scenario, it is exceedingly difficult for an imagery analyst to find a scene or |

target of interest in the Predator video archive [WIEDE97].

2.4 Summary

Digital video is an extremely rich medium  with many unique
characteristics, including massive volume, spatio-temporal characteristics, and
complex relationships. Consequently, to provide effective and efficient storage
and management of video data, much research has been accomplished towards
developing a video database management system. Critical to the design of any
database system, a VDBMS must address the issues of data modeling (including

multi-level abstractions, spatio-temporal relationships, and annotation), data
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insertion, data indexing (including annotation-based indexing and feature-based

indexing), and data query and retrieval.

A fundamental aspect that greatly affects each of these issues is the

temporal sampling of video frames, which facilitates the representation,

indexing, storage, and retrieval of data. To achieve the temporal sampling of

video data, a procedure known as video segmentation is performed. Video

segmentation is the process of decomposing a video into shots by determining

the boundary between camera shots. There are many segmentation algorithms

in the literature, each of which seeks to exploit some known characteristic of

video data. Table 2-2 summarizes the various methods described in section 2.2.

Table 2-2. Summary of Segmentation Algorithms

Method

Description

Pairwise Comparison

Examine successive frames pixel by pixel

Likelihood Comparison

Divide frames into uniform regions; compute mean
and variance for each region; compute likelihood
factor; compare factor region by region for
successive frames

Global Histogram Divides color space into bins; count colors that fall
into each bin; compare corresponding bins for

, successive frames
Local Histogram Divide frames into uniform regions; create

histograms for each region; compare histograms
region by region for successive frames

Weighted Color Histogram

Create histogram for each frame; weight histogram
based on color space; compare histograms for
successive frames

Edge Detection

Detect edges for each frame; count entering and
exiting edge pixels between successive frames;
compute edge change fraction between frames
based on max of entering/ exiting edge pixels
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Predator UAV is a tactical reconnaissance system developed as an ACTD
in support of operational requirements. The system consists of an air vehicle, a
ground control station (GCS), and ground data terminals (GDT) that provide
communication links. The air vehicle contains several data sensors, which
provide mission critical intelligence products to commanders and analysts.
Although Predator UAV furnishes numerous hours of video on completed
missions, there is no simple way to search and retrieve video data on a specific

target.
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3 METHODOLOGY

Currently, imagery intelligence analysts have no simple, automated way
to search and retrieve UAV video data on a target or area of interest. The present
method is a painstaking, by-hand examination of thousands of tapes. Even after
the correct tape is found, a manual exploration of the tape must be performed to
find the scene of interest. Future UAV missions coupled with personnel cutbacks
will create a difficult environment for search and retrieval of data.
Consequently, an automated data management system must be developed for
UAV video data.

The most logical approach to provide this capability is to store the UAV
video data in a video database system. Critical to the storage of any type of
video data in a database management system is the temporal sampling of data.
As described in Chapter 2, temporal sampling provides significant frames for
representation, indexing, storage, and retrieval. Although automatic content-
based temporal sampling of video is not presently feasible, video segmentation
does provide a viable alternative.

Video segmentation decomposes videos into segments by determining
scene breaks between consecutive camera shots. This process works relatively
well with man-made, edited video footage. However, it was unknown at the
time of this research if applying video segmentation to UAV video footage

would provide meaningful scene breaks for storage and retrieval purposes.
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Accdrdingly, the focus of this research is to analyze the applicability of applying
state-of-the-art video segmentation to UAV video data.

The methodology of this research consists of three major steps. First, an
applicable video segmentation algorithm is selected from the literature. Once an
algorithm has been selected, UAV test data are gathered for experimental
purposes. Finally, an experiment is performed to analyze the applicability of the
segmentation algorithm. The following sections provide a description of each of

these major steps.

3.1 Algorithm Selection

Many different methods of automatic video segmentation have
been proposed (see section 2.2). Each of these seeks to exploit some known
characteristic of video data, and using that characteristié, define a measure of
dissimilarity between successive frames of a video. Although several of the
algorithms are effective in their réspective domains, only the edge detection
method [ZABIH97] was chosen for this research. The following sections describe

the rationale behind the selection of the edge detection segmentation method.

3.1.1 Algorithm Comparison

Research performed in [DAILI95] examined several different video
segmentation techniques by systematically comparing their performance across
different types of videos. In particular, an ABC news video was used because it

contained a large variety of shot-transition effects, such as cuts, fades, dissolves,
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and wipes. It also contained several scenes with short duration and fast object or
camera motion. In this experiment, the various segmentation methods tested
from section 2.2 included pairwise comparison, histogram, weighted histogram,
and edge detection. Along with those methods, the chi squared, pure moment
invariant, and range of pixel-value changes methods were also tested.

The majority of the methods correctly identified the transitions 95
percent of the time or more. However, many of the methods had a
corresponding high percentage of false transition identifications. In a situation
where a human may intervene or serve as a filter, a high percentage of correct
identifications is much more important than a low number of false
identifications. This is because the human observer can filter out the false
positive transitions. However, in situations where there is no human
intervention, such as automatic segmentatioh for a large digital library, a low
percentage of incorrect transition identifications becomes increasingly important.

Of the various methods tested, many had two times as many false
transition identifications as they had correct transition identifications. However,
the edge detection method described in section 2.2.6 had a relatively low number
of false transition identifications when compared to the other methods. The only
method with a lower number of false positives was the pairwise comparison
method. Nevertheless, its percentage of correct transition identifications was

only 73 percent, while the edge detection method was 92 percent.
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3.1.2 Data Characteristics

An important consideration in the choice of segmentation algorithms was
the UAV data characteristics. The UAV typically hovers for several minutes over
an area of interest (for example, performing battle damage assessment or
surveillance of a possible target). During data collection, the Ground Control
Station (GCS) may switch the single camera feed between one of the several
visible light imagery cameras on the UAV. The abrupt change between two
different cameras can be considered a scene change. Additionally, the visible
light cameras may perform an abrupt zoom or pan across an area or between two
different areas of interest. Stationary camera shots interspersed with abrupt
camera motion can also be considered scene changes. Since UAV footage usually
contains objects with sharp edges (such as tanks, surface-to-air missile sites,
buildings, roads, etc.), scene changes will cause a large change in edges between
successive video frames. As a result, the edge detection method proposed by

[ZABIH97] was chosen for this research.

3.2 UAYV Test Data

Once an algorithm had been selected, appropriate UAV video footage was
needed for experimental purposes. This section describes the process for
acquiring the test data, along with a description of the types of video sequences

chosen for testing the algorithm developed by [ZABIH97].
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3.2.1 Test Data Acquisition

The UAV video footage used for experimental purposes in this research
was provided by Air Force Research Laboratory’s (AFRL) Signal Data Handling
Branch (AFRL/IFEC). Over seven hours of UAV footage were provided on
analog VHS and 8mm tapes. Using SNAZZI™ [DAZZL97] video capture
software and hardware at the 88 Communications Group Multimedia Center, the
footage was converted to MPEG format. Despite being in standard digital
format, the data requires further manipulations since the algorithm provided by
[ZABIH97] expects a sequence of raw video frames in Portable Graymap (PGM)
format. To accomplish this transition, a software package called mdcdecoder
[MPEGDC98] is used to convert the MPEG sequences to raw Portable Pixelmap
(PPM) format. The final conversion from PPM to PGM format is carried out by

the Convert utility of the ImageMagick™ [CRIST96] software suite.

3.2.2 Video Sequence Selection

Once a methodology is developed to convert the analog UAV data to
PGM format, sequences can then be selected as test cases for the edge detection
algorithm. During the selection process, it is important to include scenes that
encompass a wide variety of the typical visual effects a UAV may encounter,

such as the following;:

* Abrupt changes - During data collection, the GCS may switch the

single camera feed between one of the several visible light imagery
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cameras on the UAV. Additiohally, the camera feed may be turned
on/off as areas of interest are entered or exited. These abrupt changes

are common on a typical UAV mission.

Camera Zooms - When a specific target or area of interest is detected,
the UAV camera typically performs a zoom in to enhance the detail of
the imagery sent to the GCS. Likewise, to provide a broader view of

an area, a zoom out is performed.

Motion Across Scenery - On a typical mission, the UAV films large
segments of countryside and/or residential areas while approaching
the area of interest. In some instances, the UAV travels at a relatively
slow speed, and the segments are usually filmed from a high altitude,
causing the change of scenery to be gradual. In other instances, the
UAV may be traveling at a relatively low altitude, causing the change

of scenery to be more abrupt in nature.

Stationary Shots Separated by Rapid Motion - Occasionally, a UAV
may be responsible for performing surveillance on several targets in
the same lpcale. In this situation, the imagery feeds on the targets are
interspersed with rapid motion as the visible light camera quickly

rotates from one target to another.

Cloud Cover - In some instances, a UAV may encounter cloud cover

as it attempts to perform surveillance on a target. In this situation, a
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stationary shot may be interrupted by moderate to heavy cloud cover,

obscuring the target.

Fifty-four different scenes were selected as test cases from the UAV tapes
provided by AFRL. Each of the scenes captured at least one of the visual aspects
described above (some captured several of the visual aspects). Table 3-1
summarizes the actual numbers of each of the different types of visual effects

used as test cases in this research.

Table 3-1. Test Cases

Visual Effect Number of Test Cases
Abrupt Changes 18
Camera Zooms 15

Motion Across Scenery Changes 54 - All the sequences contained
motion of some type
Stationary Shots Separated by Rapid 14
Motion

Cloud Cover 4

3.3 Experimental Setup

After completion of the data acquisition process, segmentation is
performed on the selected UAV video sequences using the edge detection
algorithm, and the results are collected for analysis. This section provides a
description of the hardware and software configuration of the experiment.
Additionally, the procedure for testing the algorithm is described, along with a

discussion of the method for analysis of the experimental results.
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3.3.1 Hardware and Software Configuration

The source code for the edge detection algorithm was obtained via File
Transfer Protocol (FTP) from [ZABIH97] and stored on the Hawkeye network in
the Signal Information Processing Laboratory at AFIT. The code was
subsequently compiled under the Solaris 2.5.1 operating system using the gcc

compiler, and executed on a Sun UltraSparc workstation.

3.3.2 Experimental Process

The executable program, dissolvem, takes as input a serie.s of PGM frames,
and provides as output a matrix of information regarding inter-frame
differences. The first column of data from the matrix output of dissolvem contains
the edge change fraction (the measure of dissimilarity between successive
frames). Peaks in the edge change fraction are used to determine scene breaks.
Consequently, the edge change fraction is collected to analyze the results of

applying segmentation to UAV video data.

The experimental process consists of executing the dissolvem program on
each of the selected scenes (a series of PGM frames) and collecting the edge
change fraction. During the experiment, the frame rate of each scene is varied
across the following frame rates: 30 frames/second, 10 frames/second, and 5

frames/second.
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3.3.3 Amalysis of Results

Once the experiment concluded, the data collected from dissolvem can be

analyzed to evaluate the performance of the edge detection algorithm on UAV

surveillance data. The analysis consists of the following major steps:

Expected versus Actual Outcome - Certain video sequences are
expected to produce specific results when segmentation is applied.
For example, abrupt camera changes should produce a noticeable
spike in the edge change fraction when compared to surrounding data
points. Therefore, the results of the segmentation algorithm are
analyzed to determine if actual results are similar (or dissimilar) to

expected results.

Comparison of Similar Sequences - Different UAV video sequences
with similar visual effects (abrupt camera changes, zooms, etc.) should
produce comparable results when applying the edge detection
algorithm. The edge change fractions collected from UAV sequences
are analyzed to ascertain if similar sequences produce like or dislike

results.

Analysis of scenes with motion - During a typical UAV flight, several
hours of data will contain motion over gradual scenery changes (such

as footage of city blocks, fields, etc.). The edge change fractions of

51



scenes with motion are collected and analyzed to provide insight into

how the edge detection segmentation algorithm responds to motion.

» Explain Anomalies -~ The edge detection segmentation algorithm was
originally designed to be used with man-made edited video footage.
As a result, applying this segmentation method to UAV data may
produce anomalous results.  Consequently, anomalies will be

discussed and explained (as possible).

e False Positives - As with any segmentation method, false positives will
be common. False scene change identifications will be analyzed and

discussed as appropriate.

3.4 Summary

The focus of this research is to determine if applying video segmentation
to UAV video footage provides meaningful scene breaks for storage and retrieval
purposes. The methodology of the research consists of three major steps. First,
an applicable segmentation algorithm is selected from the literature. Based on
experirﬁentation performed in [DAILI95], and analysis of the characteristics of
UAV data, the edge detection segmentation method proposed by [ZABIH97] was
chosen. After the algorithm selection, UAV video footage is selected for
experimental purposes. To include a wide variety of the typical visual effects a
UAV may encounter, scenes with abrupt changes, camera zooms, slow motion,

rapid motion, and cloud cover are chosen. Finally, the edge detection program
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dissolvem is executed on each of the scenes (varying the frame rates) and the edge
change fraction is collected for subsequent analysis. The analysis consists of
comparing the results of expected versus actual outcomes, similar sequences, and

scenes with motion, along with explaining anomalies and false positives.
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4 RESULTS

This chapter presents the analysis of applying the edge detection
segmentation algorithm to the fifty-four scenes selected from the tapes provided
by AFRL. The first section provides a discussion of the results of the frame rate
variation. In the following sections, an analysis is provided on the results of the
various categories described in Chapter 3, including abrupt changes, rapid
motion, zooms, and cloud cover. In the final two sections, motion and false

positives/anomalies are discussed, respectively.

4.1 Frame Rate Variation

As explained in Chapter 3, the dissolvem program was executed on each of
the selected scenes, and the resulting edge change fractions were collected for
analysis. As part of the experimental process described in section 3.3.2, the frame
rate (in frames per second or fps) of each sequence was varied across the
following rates: 30 fps, 10 fps, and 5 fps. The frame rate was varied during the
experiment to determine if a reduced frame rate could allow the edge detection
algorithm to detect meaningful scene breaks. A reduction in frame rate from 30
fps to 5 fps could reduce storage and communications requirements for UAV

video footage by upwards of 20 percent.

The results of varying the frame rates are inconclusive. In several of the

UAYV sequences, varying the frame rate did not affect the scene breaks detected
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using the edge change fraction. For example, consider the following abrupt
scene change captured at 30 fps in Figure 4-1, and 5 fps in Figure 4-2. It is
obvious from these graphs that the edge change fraction did not change

noticeably when the frame rate was reduced.

However, not all scenes tested in this research behaved as predictably.
Figure 4-3 and Figure 4-4 represent another abrupt scene change, captured at 30
fps and 5 fps, respectively. In Figure 4-3, there is an obvious spike in the data,
representing the scene change. The graph depicted in Figure 4-4 is extremely
choppy in nature, making it difficult to determine where t‘he. abrupt scene change
occurs when the frame rate is reduced. This is due in large part to other
characteristics of the scene, i.e. the fast motion of the objects in view, as though
the camera is close to the ground. Consequently, no conclusive recommendation
can be made regarding the predictable advantage of 1;educed frame rates.
Additionally, the analysis presented in the remainder of this document will use

the results from 30 fps scene analysis.

4.2 Abrupt Changes

Abrupt changes in UAV surveillance footage are equivalent to a cut in
edited video such as feature films or TV shows. As such, detecting abrupt
changes is essential in successfully partitioning UAV footage for database
insertion and retrieval. There are several situations that cause an abrupt change

to take place in UAV footage, namely switching the camera feed or turning the
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camera feed on/off. Eighteen scenes from typical UAV missions were selected
that contained one of these elements. As described in section 3.3.2, the dissolvem
program was executed on each of the selected scenes and the edge change

fraction was collected.

As expected, each of the eighteen abrupt change scenes behaved in a
similar fashion. In each case, the abrupt camera change produced a noticeable
spike (relative to the surrounding data points) in the edge change fraction over a
small number of frames (usually 2 or 3 frames). Figure 4-5 depicts a typical
abrupt scene change. In Figure 4-5, the edge change fraction spikes over a series
of two frames to a vaiue of 0.763. To detect scene changes, the authors of
[ZABIH97] recommend setting the edge change fraction threshold at 0.15. Out of
the eighteen scenes tested, a threshold of 0.15 would have successfully idenfified
nine scenes. Although the other nine scenes produced a spike in relation to their
surrounding points, the actual data values were less than the recommended
threshold of 0.15. Figure 4-6 provides an‘ example of an abrupt scene change

with a spike under the recommended threshold.

There are several reasons an absolute threshold of 0.15 would not capture
an abrupt change such as the example in Figure 4-6. First, the footage in Figure
4-6 contains telemetry data (such as latitude, longitude, elevation, etc.) overlaid
on the video within boxes. These boxes are always present, and cover a large

portion of the screen with sharp edges. As the edge change fraction is calculated
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Figure 4-5. Typical Abrupt Change
from frame to frame, the sequences containing the boxed telemetry data will
have less change due to the static boxes (as compared to the sequences without
the boxed telemetry data). Additionally, certain sequences contain less complex
data than other sequences (such as a view of a field versus a view of a city block):
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Figure 4-6. Abrupt Change with Low Threshold Value
When a scene change occurs within a sequence with few sharp edges, the edge
change fraction will be noticeably lower than a scene change in a sequence with

many sharp edges. For these reasons, a relative threshold (one comparing
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surrounding data points) would provide more meaningful scene breaks than an

absolute threshold.

4.3 Rapid Motion

Fourteen sequences were selected from the tapes provided by Air Force
Research Laboratory’s (AFRL) Information Intelligence Directorate containing
rapid camera motion. Rapid motion usually occurs when one of the visible light
cameras on the UAV is quickly rotated to acquire a target or area of interést.
Consequently, the scenes occurring after rapid motion are of great interest to
intelligence analysts. Per the methodology described in Chapter 3, dissolvem was
executed on each of the sequences and the resulting edge change fractions were

collected for analysis.

Each of the rapid motion segments within the fourteen scenes was
‘detected as scene changes. The typical nature of a rapid motion scene change is a
relatively large chaﬁge in the edge change fraction over a number of frames
(from as little as 20 to as many as several hundred, depending on the duration of
the camera movement). The rapid motion can be categorized into two broad
categories. The first category consists of choppy changes in the edge change
fraction over the duration of the camera movement. This is typical when the
camera movemenf is not uniform in nature. Rather, the camera may exhibit

start/stop type motion, creating spikes in the edge change fraction interleaved
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with frames containing little or no changé. Figure 4-7 provides an example of a

rapid motion scene change with choppy edge change fractions.

Almost uniform camera movement at an extremely high speed
characterizes the second category of rapid motion. In contrast to the first
category, this type of movement causes the resulting edge change fraction to
exhibit a consistently high rate of change over the duration of the camera
movement. Figure 4-8 provides an example of the second category of rapid

motion scene change.

4.4 Zooms

In a typical UAV mission, once the target or area of interest is acquired, a
zoom in may be performed to enhance the level of detail. Likewise, a zoom out
can be performed to provide a broader view of an area. In each of the above
cases, intelligence analysts would be interested in the scenes occurring after a
zoom takes place (or in some cases, the scene before a zoom out takes place). For
this reason, it is important to determine whether the edge detection segmentation

method can detect zooms as scene changes.

Fifteen sequénces were selected from the UAV footage provided by AFRL
for experimental purposes. As with the other visual effects described earlier in
this chapter, the dissolvem program was executed on each of the scenes, and the
edge change fraction was collected for analysis. The majority of the zoom

sequences behaved favorably when segmented with the edge detection method.
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Out of the fifteen scenes, fourteen WereAidentified as scene changes for a 93.3

percent correct identification rate.

The nature of a zoom is very similar to the first category of rapid motion
when the resulting edge change fractions are analyzed. The typical zoom
sequence consists of a moderate to large change in the edge change fraction over
a number of frames (see Figure 4-9 for an example of a zoom in, and Figure 4-10
for an example of a zoom out). Like the rapid motion category, the number of
frames can be from as little as twenty to as many as several hundred, depending
on the duration of the camera action. Additionally, the edge change fractions do
not change uniformly during the zooms. This is in large part due to non-uniform
camera motion during the zoom. Consequently, the resulting edge change
fractions are choppy in nature, exhibiting spikes interleaved with frames

containing little or no change.

As discussed earlier, one of the fifteen scenes was not detected as a scene
break when analyzing the resulting edge change fractions. The main reason for
this is the nature of the camera movement of this particular sequence. In contrast
to the other zooms tested in this research, this zoom was extremely slow in
developing. For tI;is reason, the edges changed slowly from frame to frame,
causing very small changes in the edge change fraction. This small change
mimics gradual motion. As a result, this sequence was not identified as a scene

change. Using the current algorithm, detecting this event will be problematic.
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Figure 4-10. Zoom Out Scene Change
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4.5 Cloud Cover

As with any aerial surveillance platform, cloud cover can be a frequent
occurrence on UAV reconnaissance missions. In some cases, the cloud cover
may be extremely light, causing no serious impediment to the UAV mission. On
the other hand, sometimes cloud cover can be heavy in nature, partially or totally
obscuring the target from view. If segmentation is to be used to partition video
for databaée insertion, it must be determined how the edge detection

segmentation method would react to sequences with cloud cover.

Consequently, cloud cover sequences were selected from the UAV tapes
provided by Rome Laboratory. However, due to the limited sampling provided,
only four sequences were identified as test cases for this research. The first of the
four cloud sequences contained a light cloud passing tﬂrough the target area
during observation. Since the cloud was faint and the majority of the edges in
the sequence changed relatively little, the cloud was not detected by

segmentation (see Figure 4-11).

The three remaining cloud cover sequences all contained moderate to
heavy cloud cover. In two of these sequences, the edge detection method
appears to behave favorably to the clouds (for an example, see Figure 4-12). In
both cases, as the cloud cover enters the sequence, large changes in the edge
change fraction are produced and persist until the cloud exits (or allows some

visibility of the target area). In these two cases, the edge change fraction appears
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to react similar to that of a rapid motion sequence, with large changes in the edge
change fraction over many frames (depending on the number of frames

containing the cloud cover).

However, in the final heavy cloud cover sequence, the edge detection
method behaves unfavorably. In this sequence, the edge change fraction changes
radically for the duration of the sequence and no correlation with the results and
the sequence can be made. Due to the anomalous results of the final heavy cloud
cover sequence, and the limited number of samples tested, the results of this type
of visual effect are inconclusive. Although segmentation appeared to behave
favorably in several of the sequences, more research is required before a

recommendation can be made.

4.6 Motion

The large majority of UAV reconnaissance missions require the vehicle to
navigate across large segments of countryside and/or residential areas
(sometimes including cities or small towns) while en foute to the area of interest.
As a result, large portions of the UAV surveillance footage (in some cases,
several hours) may contain little or no useful information while the UAV is
approaching its destination. Therefore, it is important to determine the reaction
of segmentation to motion of various degrees over scenery. If the UAV reacts
unfavorably to certain types of motion, it may cause many false positives,

prohibiting the effective partitioning of the data.
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As discussed earlier, fifty-four sequences were chosen for test cases in this
research based on the various visual effects they contain. FEach of these
sequences contains motion of varying degrees. In accordance with the
methodology described in section 3.3.3, the edge change fractions of the
sequences were collected and analyzed. Based on that analysis, the motion of the
UAV camera can be classified into two categories: Slow/Gradual Motion at High
Altitudes and Fast Motion at Low Altitudes. These two categories are described in

the following sections.

4.6.1 Slow/Gradual Motion at High Altitudes

In many UAV flights, the vehicle travels at a relatively slow speed and a
high altitude. In this scenario, the camera motion tends to be gradual or slow in
nature, causing very little change from frame to frame. Séveral sequences tested
in this research contained this type of motion. In each case, the resulting edge
change fractions behaved in simiiar fashion. As expected, the edge change
fractions contained little or almost no change in sequences with gradual motion.
This can be considered a favorable outcome, since it would be nonsensical to
segment sequences based on gradual or slow motion. Figure 4-13 provides an

example of gradual motion.

4.6.2 Fast Motion at Low Altitudes

In some instances, the UAV may travel at a low altitude to provide detail

of a target or area of interest. Since the vehicle is traveling at a low altitude,
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Figure 4-13. Gradual Motion
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objects passing in front of the camera appear to be moving fast. Additionally, the
visible light camera on the UAV may be zoomed in to enhance the level of detail
of a specific area. When a camera is zoomed in, any type of camera movement
causes the objects to move quickly. Motion in both of the above scenarios can be
considered fast motion. Several sequences chosen for experimental purposes
contained fast motion. Based on the results of the analysis of the resulting edge
change fractions, fast motion appears to cause large changes in the edge change
fractions (see Figure 4-14 for an example of fast motion). In some cases, the fast
motion appears to have a similar effect to rapid motion. Since some UAV
missions may encounter this type of visual effect with regularity, this can be
considered an unfavorable outcome. Fast motion appears to cause false positives
(this is further described under section 4.7.3), which would cause us to segment

video data inefficiently.

4.7 False Positives and Anomalies

The edge detection segmentation algorithm proposed by [ZABIH97] was
originally intended to be used with edited video footage, such as feature films or
news broadcasts. Consequently, applying this algorithm to continuous
surveillance footage produced some false positives and anomalous results. The

following sections provide a description of these results.
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4.7.1 Words/Telemetry Data

UAV footage contains reticulated telemetry data (such as latitude,
longitude, elevation, etc.) overlaid on the video frames. In some instances, this
data may disappear and reappear, or simply be updated on the frame. The
appearance or disappearance of data, along with the updating of digits within
that data, can cause a moderate change in the edges from frame to frame.
Consequently, in many cases where the data appears or is updated, a noticeable
spike is produced in the edge change fraction (see Figure 4-15 for an example).
Based on these results, it appears as if the edge detection method reacts to

entering and exiting text on the video frame as a scene change.

4.7.2 Corrupt Data

In many instances, a small imperfection in the analog videotape (such as a
ripple, static, etc.) is transferred to the MPEG frames during the digitization
process. In these cases, the imperfection may cause a dramatic change in the
edges from frame to frame, even though no real change has occurred in the video
sequence. As expected, the resulting edge change fractions contain a spike (in
relation to the sur'rounding data points) where the corrupt data appears.
Consequently, a false positive is produced in those places of a video sequence

that contain corrupt data (see Figure 4-16).
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4.7.3 Motion

: As discussed in section 4.6.2, fast motion causes the edges to change in

some cases dramatically from frame to frame. In the case of rapid camera
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Figure 4-16. Corrupt Data
motion, where the camera is swiveled to acquire a target, acknowledging a scene
change is warranted to capture the change in situation. However, when the
UAV is simply flying at a low altitude over complex scenery (such as city

buildings, trees, etc.), or zoomed in over a particular area, denoting a scene
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change méy not be warranted. Based on the analysis of the edge change
fractions of scenes with motion, fast motion as described in section 4.6.2 Caus.es
moderate to large changes in the resulting edge change fractions. Since these
changes may persist during the length of the fast motion, the false positives may

cause the video data to be partitioned inefficiently.

4.8 Summary

This chapter presents the results of applying video segmentation to UAV
video data. As described in Chapter 3, the edge detection segmentation
algorithm was applied to fifty-four scenes selected from tapes provided by
AFRL. The frame rate variation from the standard 30 fps to lower frames rates
(10 fps and 5 fps) was inconclusive. Applying the edge detection segmentation
algorithm to abrupt changes, rapid motion, and zooms produced favorable
results, as these visual categories were all detected as scene changes. However,
applying video segmentation to scenes with cloud cover is inconclusive. As
expected, segmentation produced some anomalous results. These were due to in
large part to telemetry data, corrupt data, and camera motion. The impact of

these results is explored in Chapter 5.
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5 CONCLUSIONS AND RECOMMENDATIONS

As stated in Chapter 1, the focus of this research is to determine if the
application of video segmentation to UAV video footage can provide meaningful
segments for database storage and retrieval. To accomplish this, the edge
detection segmentation algorithm proposed by [ZABIH97] was applied to fifty-
four scenes containing various visual effects (abrupt changes, camera zooms,
rapid and gradual motion, and cloud cover) per the methodology described in
Chapter 3. Chapter 4 prévides an analysis of the results of this experiment.
Several conclusions can be drawn from this analysis, aﬁd can be grouped into
three broad categories: near-term benefits, long-term benefits, and future
research directions. The following sections present a discussion of each of these

areas.

5.1 Near-Term Benefits

Many of the visual effects that can be considered scene changes take place
in and around the target area on a typical UAV mission. While a UAV is en
route to a particular target, the visible camera feed is for the most part static.
That is, the camera does not typically perform zooms or camera movements until
entering the area of interest. However, when a UAV enters an area of interest
and the target is acquired, several actions are usually performed. These include
camera zooming to enhance the level of detail, switching among the visible light
cameras (causing an abrupt camera change), and swiveling a camera between
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targets (stationary shots separated by rapid camera motion). As evident in the
analysis presented in Chapter 4, the edge detection segmentation algorithrﬁ
behaved favorably in this experiment when encountering abrupt changes,
zooms, and stationary shots separated by rapid motion. In each of these cases,
the visual effect was detected as a scene change by the edge detection algorithm.
There are several near-term benefits provided by detecting these visual
effects as scene changes. The following sections provide a discussion of each of

these benefits.

5.1.1 Key Frames for Mission Content

The first, and probably most substantial near-term benefit, is the ability to
identify key frames from UAV mission data. Key frames can be extracted from
UAV data by selecting the first frame from each new scene, as detected by video
segmentation. Since the majority of new scenes are detected in and around the
target area, segmentation can provide a good indicator of mission content.
Building on the concept of key frames, a thumbnail sketch of the mission video
can be constructed. Using some type of graphical user interface (GUI), such as a

“web page [PAGE99], intelligence analysts can browse an entire mission video in
a matter of minutes (versus hours using the current method) by viewing only the
key frames. Analysts could then select the key frames which require attention,
and view only that portion of the mission video, saving image transmission and

bandwidth time. Additionally, since segmentation typically produces false
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positives instead of false negatives, the analyst can be assured that viewing only

key frames has missed no critical scenes.

5.1.2 Video Partitioning for Imagery Mosaics

Another important near-term benefit is the ability to effectively partition
UAV mission video for building imagery mosaics. Mosaics are still images of
several (sometimes hundreds) of consecutive video frames that have been
stitched together to provide a single panoramic image. In most cases it would be
counterproductive to create mosaics of consecutive video frames under certain
circumstances, such as camera zooms, abrupt changes, rapid motion, and other
visual effects. However, a mosaic algorithm working with video segmentation
could successfully create panoramic still images by creating mosaics between
scene changes. When a visual effect is encountered. by the segmentation
algorithm and is identifed as a scene change, the current mosaic process can be
stopped and a still image created. Once the visual effect has passed, the mosaic
process can begin again on a new image. Under this scenario, mosaics can be
created automatically in conjunction with segmentation software. The mosaics
can then be used in the same manner as key frames to provide an overview of

mission content.

5.1.3 Segmentation Based on Telemetry Data

One unexpected result from this research is the ability of segmentation to

detect entering and exiting telemetry data on video frames as scene changes.
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Although at first this appears to be nothing more than a false positive, in some
cases this could be of some importance to imagery analysts. Consider the
situation where the text 'Entering Target Area' appears on a video frame, and
causes a scene break to be detected by the segmentation software. In this
scenario, a key frame could be created which points to the portion of the video
containing the target. In conjunction with the thumbnail or mosaic process, this
could be used in effect to fast forward to the segment of the video containing the

target.

5.2 Long-Term Benefits

Each of the aforementioned near-term benefits could be implemented
using existing computer software and hardware technology in a relatively short
amount of time [PAGE99]. However, some of the benefits that segmentation
provides will take a longer time to be realized, such as several months to several

years. These are discussed in the following sections.

5.2.1 Key Frames for Indexing and Storage

The ultimate long-range goal of this research is to store UAV data in a
video database management system (VDBMS), supporting all the typical
functionality of an ordinary DBMS (indexing, querying, etc. to support as yet
unanticipated UAV post-mission analysis requirements). However, as described
in Chapter 2, video data has many differences when compared to traditional

alphanumeric data stored in ordinary database systems. A major difference is
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the temporal nature of video. To successfully store and retrieve video data in a
VDBMS, one of the first steps that must be accomplished is the identification of
significant video frames for representation, indexing, storage, and retrieval of the
data. Significant video frames could be identified by automatic temporal
sampling of the data, but since artificial intelligence and machine vision
applications required for this are not yet mature or available, segmentation can
be used as a “rough cut” to provide frames for indexing and storage. Using the
concept of key frames described in the previous section, the first frame from each
new scene detected can be used as a reference frame for indexing and
storage/retrieval purposes. Although this is still a long way from a full-blown

VDBMS, it provides the foundation for future research efforts.

5.2.2 Mission Profiles .

Another important long-term benefit is the capability to provide mission
profile information based on video segmentation characteristics. Consider a
UAYV mission that begins with a long flight over a body of water, with very little
change in the visible light camera (see Figure 5-1 for an example edge change
fraction plot). Using the edge detection segmentation algorithm, little change
would be noticed. As the UAV crosses the shoreline and encounters trees and
manmade structures, the video frames become more complex and edge detection
algorithm registers some change (but usually not enough to trigger a scene

change). In this time, some rapid camera motion, camera zooms, and abrupt

84



produces little or no scene changes. Given this scenario, a profile of the mission
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Figure 5-1. Example Mission Profile Plot Based On Edge Change Fractions

camera changes may occur causing a scene change, but usually these actions do
not occur until the target area is entered. Once the target area is entered, several
of the visual effects that cause scene changes occur, usually in a relatively short

span of time. Finally, the target area is exited, and the flight to back to base

can be generated by examining where scene changes occur in the mission
timeline and what types of scene changes occur. Combining this information

with other data sources, such as telemetry data (latitude, longitude, elevation,
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etc.)i, mission dates and times, and other pertinent information, could eventually
allow imagery analysts to perform semantic-based queries on these attributes.
For example, an analyst may want to see all video clips on 2 Feb 99 containing a
camera zoom in the area of latitude N 34 and longitude W 118.

Building on the idea of key frames and segmentation characteristics, these
long-term benefits can be realized with some additional research and advances in
computer software and hardware. The next section recommends some future
research directions that can ultimately lead to the fulfillment of both the near-

term and long-term benefits.

5.3 Future Research Directions

As described above, there are several near-term and long-term benefits to
be realized from applying video segmentation to UAV video data. Howéve'r,
before these benefits can be of any practical use, some additional research must
be accomplished. The first recommended course of follow-on research is to
explore other candidate segmentation algorithms. As described in Chapter 2,
there are many other algorithms in the iiterature, each of which exploits some
characteristic of video data (such as color histograms, motion vectors, statistical
analysis, etc)) to determine scene changes. Since many of these algorithms
exploit different characteristics, they behave differently than the edge detection
method under similar circumstances. In some situations, they may detect

changes that the edge detection method did not, or vice versa. The next logical
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step would involve layering segmentation data from several algorithms to
provide the best or most probable scene changes. Additionally, other algérithms
may behave favorably where the edge detection experienced problems (i.e., fast
motion close to the ground). Consequently, a tool that would allow an analyst
the capability to segment with different algorithms based on mission information
(elevation, average speed, terrain encountered, etc.) could be of great benefit. For
example, imagine a software package with two segmentation tools: tool 1 that
works well with rapid motion and tool 2 that Wo;ks well with abrupt changes
but poorly with rapid motion. If an intelligence analyst knew the UAV mission
was flown at high speeds close to the ground, tool 1 could be selected for
segmentation.

Another area of recommended research involves segmentation
characteristics or attributes. A major componént of a DBMS is indexes, therefore,
building indexes based on segmentation attributes should be explored. Since the
possibility exists that imagery analysts may want to query UAV data based on
visual effects (zooms, abrupt changes, rapid motion, etc.), indexes could be built
based on the type of visual effect causing the scene change of the key frame in
question. Also, other indexable attributes, such as telemetry data, date/time
stamps, object recognition technologies, etc., could be combined to provide a
layered indexing scheme, allowing analysts to query on each attribute

individually, or combining attributes to provide more complex queries.
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Following this path, the next areas to explore would include query processing
and database retrieval.

The final recommended research direction includes segmentation based
on audio cues. In current and future UAV missions, the UAV operator can
record audio information on the video. Terms such as 'Entering Target Area' or
‘Target Acquired' can be used to identify key frames for storage and retrieval
purposes. In this scenario, the audio cues would serve as synthetic scene breaks,
or scene breaks inserted into the UAV video by the operator. This allows for
more effective control of where scene breaks occur, and all but eliminates false
positives. Additionally, the audio segmentation can be layered with visual
segmentation and the other attributes available to provide a robust query and

retrieval capability for imagery analysts.

54 Summary

Based on the analysis performed in Chapter 4, the edge detection
segmentation algorithm behaved favorably by detecting scene changes when
encountering abrupt changes, zooms, and stationary shots separated by rapid
motion. These results pfoduce several near-term benefits, including the
capability to identify key frames from UAV mission data, effectively partition
UAV mission video for building imagery mosaics, and the ability to detect
entering and exiting telemetry data on video frames as scene changes. Along

with the near-term benefits, several long-term benefits are also produced, such as
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the .ability to provide key frames for indexing/storage and mission profile
information based on video segmentation characteristics. To realize these
benefits, several future research directions are recommended. These include the
exploration of other candidate segmentation algorithms, using segmentation

attributes as database indexes, and audio segmentation.
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APPENDIX A - DATA AND SOFTWARE

AVAILABILITY

The data and software used in this research is available by contacting the
AFIT School of Engineering Database Systems Research Point of Contact (POC).

Currently, the Database Research POC is:

Maj Michael L. Talbert
Air Force Institute of Technology
WPAFB, OH 45433-7765

Email: michael.talbert@afit.af . mil
Phone: DSN 785-6565 ext. 4280 COMM (937) 255-6565
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